Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

MiR169 and its target PagHAP2-6 regulated by ABA are involved in poplar cambium dormancy.

Identifieur interne : 001774 ( Main/Exploration ); précédent : 001773; suivant : 001775

MiR169 and its target PagHAP2-6 regulated by ABA are involved in poplar cambium dormancy.

Auteurs : Qi Ding [République populaire de Chine] ; Jun Zeng [République populaire de Chine] ; Xin-Qiang He [République populaire de Chine]

Source :

RBID : pubmed:27111502

Descripteurs français

English descriptors

Abstract

Dormancy is an effective strategy for perennial plants in temperate zones to survive the winter stress. MicroRNAs (miRNAs) have been well known as important regulators for various biological processes. In this study, we checked the expression of miR169 members in the cambium zone during dormancy and active growth in poplar and found that they had distinct expression patterns. We identified and characterized a dormancy-specific target gene of miR169, PagHAP2-6. 5' RACE assays confirmed the direct cleavage of PagHAP2-6 mRNA by miR169. The yeast functional complementation analysis showed that PagHAP2-6 was a homolog of Heme Activator Protein2 (HAP2)/Nuclear factor Y-A (NF-YA) transcription factor in poplar. qRT-PCR analysis indicated that PagHAP2-6 was highly expressed in the dormant stage, which was converse to the expression pattern of pag-miR169a, n, and r. In addition, the transcription of PagHAP2-6 was induced by exogenous abscisic acid (ABA), and both over-expression of PagHAP2-6 in Arabidopsis and transient co-expression assays in Nicotiana benthamiana indicated that PagHAP2-6 could increase the resistance to exogenous ABA. Taken together, the results suggested that miR169 and its target PagHAP2-6 regulated by ABA were involved in poplar cambium dormancy, which provided new insights into the regulatory mechanisms of tree dormancy-active growth transition.

DOI: 10.1016/j.jplph.2016.03.017
PubMed: 27111502


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">MiR169 and its target PagHAP2-6 regulated by ABA are involved in poplar cambium dormancy.</title>
<author>
<name sortKey="Ding, Qi" sort="Ding, Qi" uniqKey="Ding Q" first="Qi" last="Ding">Qi Ding</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zeng, Jun" sort="Zeng, Jun" uniqKey="Zeng J" first="Jun" last="Zeng">Jun Zeng</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="He, Xin Qiang" sort="He, Xin Qiang" uniqKey="He X" first="Xin-Qiang" last="He">Xin-Qiang He</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China. Electronic address: hexq@pku.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27111502</idno>
<idno type="pmid">27111502</idno>
<idno type="doi">10.1016/j.jplph.2016.03.017</idno>
<idno type="wicri:Area/Main/Corpus">001822</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001822</idno>
<idno type="wicri:Area/Main/Curation">001822</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001822</idno>
<idno type="wicri:Area/Main/Exploration">001822</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">MiR169 and its target PagHAP2-6 regulated by ABA are involved in poplar cambium dormancy.</title>
<author>
<name sortKey="Ding, Qi" sort="Ding, Qi" uniqKey="Ding Q" first="Qi" last="Ding">Qi Ding</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zeng, Jun" sort="Zeng, Jun" uniqKey="Zeng J" first="Jun" last="Zeng">Jun Zeng</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="He, Xin Qiang" sort="He, Xin Qiang" uniqKey="He X" first="Xin-Qiang" last="He">Xin-Qiang He</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China. Electronic address: hexq@pku.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of plant physiology</title>
<idno type="eISSN">1618-1328</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic Acid (pharmacology)</term>
<term>Base Sequence (MeSH)</term>
<term>Cambium (drug effects)</term>
<term>Cambium (genetics)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>MicroRNAs (genetics)</term>
<term>MicroRNAs (metabolism)</term>
<term>Plant Dormancy (drug effects)</term>
<term>Plant Dormancy (genetics)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (drug effects)</term>
<term>Populus (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Transcription, Genetic (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide abscissique (pharmacologie)</term>
<term>Cambium (effets des médicaments et des substances chimiques)</term>
<term>Cambium (génétique)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Dormance des plantes (effets des médicaments et des substances chimiques)</term>
<term>Dormance des plantes (génétique)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (génétique)</term>
<term>Gènes de plante (MeSH)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Test de complémentation (MeSH)</term>
<term>Transcription génétique (effets des médicaments et des substances chimiques)</term>
<term>microARN (génétique)</term>
<term>microARN (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>MicroRNAs</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>MicroRNAs</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Abscisic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cambium</term>
<term>Gene Expression Regulation, Plant</term>
<term>Plant Dormancy</term>
<term>Plant Leaves</term>
<term>Populus</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Cambium</term>
<term>Dormance des plantes</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transcription génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cambium</term>
<term>Plant Dormancy</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cambium</term>
<term>Dormance des plantes</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines végétales</term>
<term>Saccharomyces cerevisiae</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide abscissique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Cloning, Molecular</term>
<term>Genes, Plant</term>
<term>Genetic Complementation Test</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Clonage moléculaire</term>
<term>Gènes de plante</term>
<term>Séquence nucléotidique</term>
<term>Test de complémentation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Dormancy is an effective strategy for perennial plants in temperate zones to survive the winter stress. MicroRNAs (miRNAs) have been well known as important regulators for various biological processes. In this study, we checked the expression of miR169 members in the cambium zone during dormancy and active growth in poplar and found that they had distinct expression patterns. We identified and characterized a dormancy-specific target gene of miR169, PagHAP2-6. 5' RACE assays confirmed the direct cleavage of PagHAP2-6 mRNA by miR169. The yeast functional complementation analysis showed that PagHAP2-6 was a homolog of Heme Activator Protein2 (HAP2)/Nuclear factor Y-A (NF-YA) transcription factor in poplar. qRT-PCR analysis indicated that PagHAP2-6 was highly expressed in the dormant stage, which was converse to the expression pattern of pag-miR169a, n, and r. In addition, the transcription of PagHAP2-6 was induced by exogenous abscisic acid (ABA), and both over-expression of PagHAP2-6 in Arabidopsis and transient co-expression assays in Nicotiana benthamiana indicated that PagHAP2-6 could increase the resistance to exogenous ABA. Taken together, the results suggested that miR169 and its target PagHAP2-6 regulated by ABA were involved in poplar cambium dormancy, which provided new insights into the regulatory mechanisms of tree dormancy-active growth transition. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27111502</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>04</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1618-1328</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>198</Volume>
<PubDate>
<Year>2016</Year>
<Month>Jul</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of plant physiology</Title>
<ISOAbbreviation>J Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>MiR169 and its target PagHAP2-6 regulated by ABA are involved in poplar cambium dormancy.</ArticleTitle>
<Pagination>
<MedlinePgn>1-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jplph.2016.03.017</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0176-1617(16)30023-2</ELocationID>
<Abstract>
<AbstractText>Dormancy is an effective strategy for perennial plants in temperate zones to survive the winter stress. MicroRNAs (miRNAs) have been well known as important regulators for various biological processes. In this study, we checked the expression of miR169 members in the cambium zone during dormancy and active growth in poplar and found that they had distinct expression patterns. We identified and characterized a dormancy-specific target gene of miR169, PagHAP2-6. 5' RACE assays confirmed the direct cleavage of PagHAP2-6 mRNA by miR169. The yeast functional complementation analysis showed that PagHAP2-6 was a homolog of Heme Activator Protein2 (HAP2)/Nuclear factor Y-A (NF-YA) transcription factor in poplar. qRT-PCR analysis indicated that PagHAP2-6 was highly expressed in the dormant stage, which was converse to the expression pattern of pag-miR169a, n, and r. In addition, the transcription of PagHAP2-6 was induced by exogenous abscisic acid (ABA), and both over-expression of PagHAP2-6 in Arabidopsis and transient co-expression assays in Nicotiana benthamiana indicated that PagHAP2-6 could increase the resistance to exogenous ABA. Taken together, the results suggested that miR169 and its target PagHAP2-6 regulated by ABA were involved in poplar cambium dormancy, which provided new insights into the regulatory mechanisms of tree dormancy-active growth transition. </AbstractText>
<CopyrightInformation>Copyright © 2016 Elsevier GmbH. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>Qi</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zeng</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Xin-Qiang</ForeName>
<Initials>XQ</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China. Electronic address: hexq@pku.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>04</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>J Plant Physiol</MedlineTA>
<NlmUniqueID>9882059</NlmUniqueID>
<ISSNLinking>0176-1617</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>72S9A8J5GW</RegistryNumber>
<NameOfSubstance UI="D000040">Abscisic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000040" MajorTopicYN="N">Abscisic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058506" MajorTopicYN="N">Cambium</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057445" MajorTopicYN="N">Plant Dormancy</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ABA</Keyword>
<Keyword MajorTopicYN="N">Cambium</Keyword>
<Keyword MajorTopicYN="N">Dormancy</Keyword>
<Keyword MajorTopicYN="N">PagHAP2-6</Keyword>
<Keyword MajorTopicYN="N">miR169</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>09</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>03</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>03</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27111502</ArticleId>
<ArticleId IdType="pii">S0176-1617(16)30023-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.jplph.2016.03.017</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<region>
<li>Pékin</li>
</region>
<settlement>
<li>Pékin</li>
</settlement>
<orgName>
<li>Université de Pékin</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Ding, Qi" sort="Ding, Qi" uniqKey="Ding Q" first="Qi" last="Ding">Qi Ding</name>
</noRegion>
<name sortKey="He, Xin Qiang" sort="He, Xin Qiang" uniqKey="He X" first="Xin-Qiang" last="He">Xin-Qiang He</name>
<name sortKey="Zeng, Jun" sort="Zeng, Jun" uniqKey="Zeng J" first="Jun" last="Zeng">Jun Zeng</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001774 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001774 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27111502
   |texte=   MiR169 and its target PagHAP2-6 regulated by ABA are involved in poplar cambium dormancy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27111502" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020